Mechanisms of Gene Regulation: How Science Works

Mechanisms of Gene Regulation: How Science Works image
ISBN-10:

3030523209

ISBN-13:

9783030523206

Edition: 1st ed. 2020
Released: Oct 30, 2020
Publisher: Springer
Format: Paperback, 165 pages
to view more data

Description:

About the Author\nCarsten Carlberg graduated 1989 with a PhD in biochemistry at the Free University Berlin (Germany). After positions as postdoc at Roche (Basel, Switzerland), group leader at the University of Geneva (Switzerland) and docent at the University of Düsseldorf (Germany) he is since 2000 full professor of biochemistry at the University of Eastern Finland in Kuopio (Finland). His work focuses on mechanisms of gene regulation by nuclear hormones, in particular on vitamin D. At present Prof. Carlberg focuses projects on epigenome-wide effects of vitamin D on the human immune system.
Ferdinand Molnár received his PhD in biochemistry from the University of Kuopio (Kuopio, Finland) in 2006. He did his postdoctoral training in Structural Biology at the IGBMC (Illkirch, France). In 2008 he joined the School of Pharmacy at the University of Eastern Finland (Kuopio, Finland) studying nuclear receptor-ligand, - protein and -DNA interactions. In 2018 he moved to the Nazarbayev University (Nur-Sultan, Kazakhstan) where he holds an Associate Professor position at the Department of Biology. Prof. Molnár interests are integrative structural biology and bioinformatics, eukaryotic transcriptional regulation in health and disease and recombinant protein production.\nThis textbook aims to describe the fascinating area of eukaryotic gene regulation for graduate students in all areas of the biomedical sciences. Gene expression is essential in shaping the various phenotypes of cells and tissues and as such, regulation of gene expression is a fundamental aspect of nearly all processes in physiology, both in healthy and in diseased states. Th is pivotal role for the regulation of gene expression makes this textbook essential reading for students of all the biomedical sciences, in order to be better prepared for their specialized disciplines. A complete understanding of transcription factors and the processes that alter their activity is a major goal of modern life science research. The availability of the whole human genome sequence (and that of other eukaryotic genomes) and the consequent development of next-generation sequencing technologies have significantly changed nearly all areas of the biological sciences. For example, the genome-wide location of histone modifications and transcription factor binding sites, such as provided by the ENCODE consortium, has greatly improved our understanding of gene regulation. Therefore, the focus of this book is the description of the post-genome understanding of gene regulation.


























We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.

Want a Better Price Offer?

Set a price alert and get notified when the book starts selling at your price.

Want to Report a Pricing Issue?

Let us know about the pricing issue you've noticed so that we can fix it.