Functional Differential Operators and Equations (Mathematics and Its Applications, 473)
Description:
This book deals with linear functional differential equations and operator theory methods for their investigation.
The main topics are: the equivalence of the input-output stability of the equation Lx = &mathsf; and the invertibility of the operator L in the class of casual operators; the equivalence of input-output and exponential stability; the equivalence of the dichotomy of solutions for the homogeneous equation Lx = 0 and the invertibility of the operator L; the properties of Green's function; the independence of the stability of an equation from the norm on the space of solutions; shift invariant functional differential equations in Banach space; the possibility of the reduction of an equation of neutral type to an equation of retarded type; special full subalgebras of integral and difference operators, and operators with unbounded memory; and the analogue of Fredholm's alternative for operators with almost periodic coefficients where one-sided invertibility implies two-sided invertibility.
Audience: This monograph will be of interest to students and researchers working in functional differential equations and operator theory and is recommended for graduate level courses.