Representation Learning for Natural Language Processing

Representation Learning for Natural Language Processing image
ISBN-10:

9811555753

ISBN-13:

9789811555756

Edition: 1st ed. 2020
Released: Sep 18, 2020
Publisher: Springer
Format: Paperback, 358 pages
to view more data

Description:

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions.

The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.

Low Price Summary






Top Bookstores


























We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.

DISCLOSURE: We're an eBay Partner Network affiliate and we earn commissions from purchases you make on eBay via one of the links above.

Want a Better Price Offer?

Set a price alert and get notified when the book starts selling at your price.

Want to Report a Pricing Issue?

Let us know about the pricing issue you've noticed so that we can fix it.