Riemannian Geometry and Geometric Analysis
Description:
This textbook introduces techniques from nonlinear analysis at an early stage. Such techniques have recently become an indispensable tool in research in geometry, and they are treated here for the first time in a textbook. Topics include: Differentiable and Riemannian manifolds, metric properties, tensor calculus, vector bundles; the Hodge Theorem for de Rham cohomology; connections and curvature, the Yang-Mills functional; geodesics and Jacobi fields, Rauch comparison theorem and applications; Morse theory (including an introduction to algebraic topology), applications to the existence of closed geodesics; symmetric spaces and Kähler manifolds; the Palais-Smale condition and closed geodesics; Harmonic maps, minimal surfaces.
Low Price Summary
Top Bookstores
DISCLOSURE: We're an eBay Partner Network affiliate and we earn commissions from purchases you make on eBay via one of the links above.
Want a Better Price Offer?
Set a price alert and get notified when the book starts selling at your price.
Want to Report a Pricing Issue?
Let us know about the pricing issue you've noticed so that we can fix it.