Granular Neural Networks, Pattern Recognition and Bioinformatics (Studies in Computational Intelligence, 712)
Description:
This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinformatics applications. The book is recommended for both students and practitioners working in computer science, electrical engineering, data science, system design, pattern recognition, image analysis, neural computing, social network analysis, big data analytics, computational biology and soft computing.
Low Price Summary
Top Bookstores
We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.
DISCLOSURE: We're an eBay Partner Network affiliate and we earn commissions from purchases you make on eBay via one of the links above.
DISCLOSURE: We're an eBay Partner Network affiliate and we earn commissions from purchases you make on eBay via one of the links above.
Want a Better Price Offer?
Set a price alert and get notified when the book starts selling at your price.
Want to Report a Pricing Issue?
Let us know about the pricing issue you've noticed so that we can fix it.