Mathematical Theories of Machine Learning - Theory and Applications

Mathematical Theories of Machine Learning - Theory and Applications image
ISBN-10:

3030170756

ISBN-13:

9783030170752

Edition: 1st ed. 2020
Released: Jun 26, 2019
Publisher: Springer
Format: Hardcover, 154 pages
to view more data

Description:

This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection.


























We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.

Want a Better Price Offer?

Set a price alert and get notified when the book starts selling at your price.

Want to Report a Pricing Issue?

Let us know about the pricing issue you've noticed so that we can fix it.