Quantum Mechanics built on Algebraic Geometry: Emerging Physics through Symbolic Computation

Quantum Mechanics built on Algebraic Geometry: Emerging Physics through Symbolic Computation image
ISBN-10:

1636480713

ISBN-13:

9781636480718

Author(s): Kikuchi, Akihito
Released: Jan 04, 2021
Publisher: Eliva Press
Format: Paperback, 285 pages
to view more data

Description:

This book presents a novel standpoint concerning contemporary physics, namely, quantum mechanics with a view toward algebraic geometry. As is well-known, algebraic geometry is the study of geometric objects delineated by polynomials, and the polynomial representations are ubiquitous in physics. For this reason, quantum mechanics is also an object of algebraic geometry. An example is the eigenvalue problem. It is a set of polynomial equations and has traditionally been the question of linear algebra. However, the modern method of computational algebraic geometry accurately unravels the information encapsulated in the polynomials. This approach shall not remain as a plaything. It has betokened an innovative style of electronic structure computation. The objects of this new method include the simultaneous determination of the wave-functions and the movements of nuclei, or the prediction of the required structure that shall show the desired property. Accordingly, this book explains the basic ideas of computational algebraic geometry and related topics, such as Groebner bases, primary ideal decomposition, Dmodules, Galois, class field theory, etc. The intention of the author is, nevertheless, not to give an irksome list of abstract concepts. He hopes that the readers shall use algebraic geometry as the active tool of the computations. For this reason, this book abundantly presents the model computations, by which the readers shall learn how to apply algebraic geometry toward quantum mechanics. The readers shall also see the modern computer algebra could facilitate the study when you would like to apply abstract mathematical ideas to definite physical problems.












We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.