Analysis and Simulation of Chaotic Systems (Applied Mathematical Sciences)

Analysis and Simulation of Chaotic Systems (Applied Mathematical Sciences) image
ISBN-10:

1475773862

ISBN-13:

9781475773866

Edition: 2nd ed. 2000. Softcover reprint of the original 2nd ed. 2000
Released: Mar 17, 2013
Publisher: Springer
Format: Paperback, 338 pages
to view more data

Description:

Beginning with realistic mathematical or verbal models of physical or biological phenomena, the author derives tractable models for further mathematical analysis or computer simulations. For the most part, derivations are based on perturbation methods, and the majority of the text is devoted to careful derivations of implicit function theorems, the method of averaging, and quasi-static state approximation methods. The duality between stability and perturbation is developed and used, relying heavily on the concept of stability under persistent disturbances. Relevant topics about linear systems, nonlinear oscillations, and stability methods for difference, differential-delay, integro-differential and ordinary and partial differential equations are developed throughout the book. For the second edition, the author has restructured the chapters, placing special emphasis on introductory materials in Chapters 1 and 2 as distinct from presentation materials in Chapters 3 through 8. In addition, more material on bifurcations from the point of view of canonical models, sections on randomly perturbed systems, and several new computer simulations have been added.

Low Price Summary






Top Bookstores


























We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.

DISCLOSURE: We're an eBay Partner Network affiliate and we earn commissions from purchases you make on eBay via one of the links above.

Want a Better Price Offer?

Set a price alert and get notified when the book starts selling at your price.

Want to Report a Pricing Issue?

Let us know about the pricing issue you've noticed so that we can fix it.