Stability of Functional Equations in Random Normed Spaces (Springer Optimization and Its Applications, 86)

Stability of Functional Equations in Random Normed Spaces (Springer Optimization and Its Applications, 86) image
ISBN-10:

1461484766

ISBN-13:

9781461484769

Edition: 2013
Released: Aug 27, 2013
Publisher: Springer
Format: Hardcover, 265 pages
to view more data

Description:

This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide to investigate this extensive domain of research.The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research.

























We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.

Want a Better Price Offer?

Set a price alert and get notified when the book starts selling at your price.

Want to Report a Pricing Issue?

Let us know about the pricing issue you've noticed so that we can fix it.