Causation, Prediction, and Search (Lecture Notes in Statistics)
1461276500
9781461276500
Description:
This thoroughly thought-provoking book is unorthodox in its claim that under appropriate assumptions causal structures may be inferred from non-experimental sample data. The authors adopt two axioms relating causal relationships to probability distributions. These axioms have only been explicitly suggested in the statistical literature over the last 15 years but have been implicitly assumed in a variety of statistical disciplines. On the basis of these axioms, the authors propose a number of computationally efficient search procedures that infer causal relationships from non-experimental sample data and background knowledge. They also deduce a variety of theorems concerning estimation, sampling, latent variable existence and structure, regression, indistinguishability relations, experimental design, prediction, Simpsons paradox, and other topics. For the most part, technical details have been placed in the book's last chapter, and so the main results will be accessible to any research worker (regardless of discipline) who is interested in statistical methods to help establish or refute causal claims.
Low Price Summary
Top Bookstores
DISCLOSURE: We're an eBay Partner Network affiliate and we earn commissions from purchases you make on eBay via one of the links above.
Want a Better Price Offer?
Set a price alert and get notified when the book starts selling at your price.
Want to Report a Pricing Issue?
Let us know about the pricing issue you've noticed so that we can fix it.