Statistics for Biological Networks: How to Infer Networks from Data (Chapman & Hall/CRC Interdisciplinary Statistics)
Description:
An introduction to a new paradigm in social, technological, and scientific discourse, this book presents an overview of statistical methods for describing, modeling, and inferring biological networks using genomic and other types of data. It covers a large variety of modern statistical techniques, such as sparse graphical models, state space models, Boolean networks, and hidden Markov models. The authors address gene transcription data, microRNAs, ChIP-chip, and RNAi data. Along with end-of-chapter exercises, the text includes many real-world examples with implementations using a dedicated R package.
We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.
Want a Better Price Offer?
Set a price alert and get notified when the book starts selling at your price.
Want to Report a Pricing Issue?
Let us know about the pricing issue you've noticed so that we can fix it.