Integral Transforms and Their Applications
Description:
Integral Transforms and Their Applications, Third Edition covers advanced mathematical methods for many applications in science and engineering. The book is suitable as a textbook for senior undergraduate and first-year graduate students and as a reference for professionals in mathematics, engineering, and applied sciences. It presents a systematic development of the underlying theory as well as a modern approach to Fourier, Laplace, Hankel, Mellin, Radon, Gabor, wavelet, and Z transforms and their applications.
New to the Third Edition
- New material on the historical development of classical and modern integral transforms
- New sections on Fourier transforms of generalized functions, the Poisson summation formula, the Gibbs phenomenon, and the Heisenberg uncertainty principle
- Revised material on Laplace transforms and double Laplace transforms and their applications
- New examples of applications in mechanical vibrations, electrical networks, quantum mechanics, integral and functional equations, fluid mechanics, mathematical statistics, special functions, and more
- New figures that facilitate a clear understanding of physical explanations
- Updated exercises with solutions, tables of integral transforms, and bibliography
Through numerous examples and end-of-chapter exercises, this book develops readers' analytical and computational skills in the theory and applications of transform methods. It provides accessible working knowledge of the analytical methods and proofs required in pure and applied mathematics, physics, and engineering, preparing readers for subsequent advanced courses and research in these areas.
Low Price Summary
Top Bookstores
DISCLOSURE: We're an eBay Partner Network affiliate and we earn commissions from purchases you make on eBay via one of the links above.
Want a Better Price Offer?
Set a price alert and get notified when the book starts selling at your price.
Want to Report a Pricing Issue?
Let us know about the pricing issue you've noticed so that we can fix it.