Foundations of Data Science with Python (Chapman & Hall/CRC The Python Series)

Foundations of Data Science with Python (Chapman & Hall/CRC The Python Series) image
ISBN-10:

1032350423

ISBN-13:

9781032350424

Author(s): Shea, John M.
Edition: 1
Released: Feb 22, 2024
Format: Paperback, 502 pages
to view more data

Description:

Foundations of Data Science with Python introduces readers to the fundamentals of data science, including data manipulation and visualization, probability, statistics, and dimensionality reduction. This book is targeted toward engineers and scientists, but it should be readily understandable to anyone who knows basic calculus and the essentials of computer programming. It uses a computational-first approach to data science: the reader will learn how to use Python and the associated data-science libraries to visualize, transform, and model data, as well as how to conduct statistical tests using real data sets. Rather than relying on obscure formulas that only apply to very specific statistical tests, this book teaches readers how to perform statistical tests via resampling; this is a simple and general approach to conducting statistical tests using simulations that draw samples from the data being analyzed. The statistical techniques and tools are explained and demonstrated using a diverse collection of data sets to conduct statistical tests related to contemporary topics, from the effects of socioeconomic factors on the spread of the COVID-19 virus to the impact of state laws on firearms mortality.

This book can be used as an undergraduate textbook for an Introduction to Data Science course or to provide a more contemporary approach in courses like Engineering Statistics. However, it is also intended to be accessible to practicing engineers and scientists who need to gain foundational knowledge of data science.

Key Features:

  • Applies a modern, computational approach to working with data
  • Uses real data sets to conduct statistical tests that address a diverse set of contemporary issues
  • Teaches the fundamentals of some of the most important tools in the Python data-science stack
  • Provides a basic, but rigorous, introduction to Probability and its application to Statistics
  • Offers an accompanying website that provides a unique set of online, interactive tools to help the reader learn the material












We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.