Computational Inverse Techniques in Nondestructive Evaluation
Description:
Ill-posedness. Regularization. Stability. Uniqueness. To many engineers, the language of inverse analysis projects a mysterious and frightening image, an image made even more intimidating by the highly mathematical nature of most texts on the subject. But the truth is that given a sound experimental strategy, most inverse engineering problems can be well-posed and not difficult to deal with.
Computational Inverse Techniques in Nondestructive Evaluation sets forth in clear, easy-to-understand terms the principles, computational methods, and algorithms of inverse analyses based on elastic waves or the dynamic responses of solids and structures. After describing the features of inverse problems, the authors discuss the regularization methods useful in handling ill-posed problems. The book also presents practical optimization algorithms, including some developed and successfully tested by his research group.
Inverse analyses are fast becoming one of the engineer's most powerful tools in nondestructive evaluation and testing. With straightforward examples, a wealth of specific applications, and clear exposition written by engineers for engineers, this book offers an outstanding opportunity to overcome any trepidation and begin using inverse analysis in practice.