Topological Invariants for Projection Method Patterns (Memoirs of the American Mathematical Society)
Released: Jan 01, 2002
Publisher: Amer Mathematical Society
Format: Paperback, 120 pages
to view more data
Description:
This memoir develops, discusses and compares a range of commutative and non-commutative invariants defined for projection method tilings and point patterns. The projection method refers to patterns, particularly the quasiperiodic patterns, constructed by the projection of a strip of a high dimensional integer lattice to a smaller dimensional Euclidean space. In the first half of the memoir the acceptance domain is very general - any compact set which is the closure of its interior - while in the second half we concentrate on the so-called canonical patterns. The topological invariants used are various forms of $K$-theory and cohomology applied to a variety of both $C*$-algebras and dynamical systems derived from such a pattern.The invariants considered all aim to capture geometric properties of the original patterns, such as quasiperiodicity or self-similarity, but one of the main motivations is also to provide an accessible approach to the the $K0$ group of the algebra of observables associated to a quasicrystal with atoms arranged on such a pattern. The main results provide complete descriptions of the (unordered) $K$-theory and cohomology of codimension 1 projection patterns, formulae for these invariants for codimension 2 and 3 canonical projection patterns, general methods for higher codimension patterns and a closed formula for the Euler characteristic of arbitrary canonical projection patterns.Computations are made for the Ammann-Kramer tiling. Also included are qualitative descriptions of these invariants for generic canonical projection patterns. Further results include an obstruction to a tiling arising as a substitution and an obstruction to a substitution pattern arising as a projection. One corollary is that, generically, projection patterns cannot be derived via substitution systems.
Low Price Summary
Top Bookstores
We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.
DISCLOSURE: We're an eBay Partner Network affiliate and we earn commissions from purchases you make on eBay via one of the links above.
DISCLOSURE: We're an eBay Partner Network affiliate and we earn commissions from purchases you make on eBay via one of the links above.
Want a Better Price Offer?
Set a price alert and get notified when the book starts selling at your price.
Want to Report a Pricing Issue?
Let us know about the pricing issue you've noticed so that we can fix it.