The Classification of the Finite Simple Groups, Number 4 (Mathematical Surveys & Monographs)
Description:
After three introductory volumes on the classification of the finite simple groups, (Mathematical Surveys and Monographs, Volumes 40.1, 40.2, and 40.3), the authors now start the proof of the classification theorem: They begin the analysis of a minimal counterexample $G$ to the theorem. Two fundamental and powerful theorems in finite group theory are examined: the Bender-Suzuki theorem on strongly embedded subgroups (for which the non-character-theoretic part of the proof is provided) and Aschbacher's Component theorem. Included are new generalizations of Aschbacher's theorem which treat components of centralizers of involutions and $p$-components of centralizers of elements of order $p$ for arbitrary primes $p$. This book, with background from sections of the previous volumes, presents in an approachable manner critical aspects of the classification of finite simple groups. Features: Treatment of two fundamental and powerful theorems in finite group theory. Proofs that are accessible and largely self-contained. New results generalizing Aschbacher's Component theorem and related component uniqueness theorems.
Low Price Summary
Top Bookstores
DISCLOSURE: We're an eBay Partner Network affiliate and we earn commissions from purchases you make on eBay via one of the links above.
Want a Better Price Offer?
Set a price alert and get notified when the book starts selling at your price.
Want to Report a Pricing Issue?
Let us know about the pricing issue you've noticed so that we can fix it.