Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions (Memoirs of the American Mathematical Society)
Released: Jan 01, 1996
Publisher: Amer Mathematical Society
Format: Paperback, 110 pages
to view more data
Description:
Currently, new trends in mathematics are emerging from the fruitful interaction between signal processing, image processing, and classical analysis. One example is given by "wavelets", which incorporate both the know-how of the Calderon-Zygmund school and the efficiency of some fast algorithms developed in signal processing (quadrature mirror filters and pyramidal algorithms.) A second example is "multi-fractal analysis". The initial motivation was the study of fully developed turbulence and the introduction by Frisch and Parisi of the multi-fractal spectrum. Multi-fractal analysis provides a deeper insight into many classical functions in mathematics. A third example---"chirps"---is studied in this book. Chirps are used in modern radar or sonar technology. Once given a precise mathematical definition, chirps constitute a powerful tool in classical analysis. In this book, wavelet analysis is related to the 2-microlocal spaces discovered by J. M. Bony. The authors then prove that a wavelet based multi-fractal analysis leads to a remarkable improvement of Sobolev embedding theorem. In addition, they show that chirps were hidden in a celebrated Riemann series. Features: Provides the reader with some basic training in new lines of research. Clarifies the relationship between pointwise behavior and size properties of wavelet coefficents.
We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.
Want a Better Price Offer?
Set a price alert and get notified when the book starts selling at your price.
Want to Report a Pricing Issue?
Let us know about the pricing issue you've noticed so that we can fix it.