Kac-Moody Groups, Their Flag Varieties & Representation Theory

Kac-Moody Groups, Their Flag Varieties & Representation Theory image
ISBN-10:

0817642277

ISBN-13:

9780817642273

Edition: 2002 ed.
Released: Sep 10, 2002
Publisher: Birkhauser
Format: Hardcover, 609 pages
to view more data

Description:

Kac-Moody Lie algebras 9 were introduced in the mid-1960s independently by V. Kac and R. Moody, generalizing the finite-dimensional semisimple Lie alge bras which we refer to as the finite case. The theory has undergone tremendous developments in various directions and connections with diverse areas abound, including mathematical physics, so much so that this theory has become a stan dard tool in mathematics. A detailed treatment of the Lie algebra aspect of the theory can be found in V. Kac's book [Kac-90l This self-contained work treats the algebro-geometric and the topological aspects of Kac-Moody theory from scratch. The emphasis is on the study of the Kac-Moody groups 9 and their flag varieties XY, including their detailed construction, and their applications to the representation theory of g. In the finite case, 9 is nothing but a semisimple Y simply-connected algebraic group and X is the flag variety 9 /Py for a parabolic subgroup p y C g.












We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.