Almost-Periodic Functions and Functional Equations (The university series in higher mathematics)
Description:
The theory of almost-periodic functions with complex values, created by H. Bohr [1] in his two classical papers published in Acta Mathematica in 1925 and 1926, has been developed by many authors and has had note worthy applications: we recall the works of Weyl, De la Vallee Poussin, Bochner, Stepanov, Wiener, Besicovic, Favard, Delsarte, Maak, Bogoliu bov, Levitan. This subject has been widely treated in the monographs by Bohr [2], Favard [1], Besicovic [1], Maak [1], Levitan [1], Cinquini [1], Corduneanu [1], [2]. An important class of almost-periodic functions was studied at the beginning of the century by Bohl and Esclangon. Bohr's theory has been extended by Muckenhoupt [1] in a particular case and, subsequently, by Bochner [1] and by Bochner and Von Neumann [1] to very general abstract spaces. The extension to Banach spaces is, in particular, of great interest, in view of the fundamental importance of these spaces in theory and application.
We're an Amazon Associate. We earn from qualifying purchases at Amazon and all stores listed here.
Want a Better Price Offer?
Set a price alert and get notified when the book starts selling at your price.
Want to Report a Pricing Issue?
Let us know about the pricing issue you've noticed so that we can fix it.