Practical MLOps: Operationalizing Machine Learning Models
Description:
Product Description \nGetting your models into production is the fundamental challenge of machine learning. MLOps offers a set of proven principles aimed at solving this problem in a reliable and automated way. This insightful guide takes you through what MLOps is (and how it differs from DevOps) and shows you how to put it into practice to operationalize your machine learning models.
Current and aspiring machine learning engineers--or anyone familiar with data science and Python--will build a foundation in MLOps tools and methods (along with AutoML and monitoring and logging), then learn how to implement them in AWS, Microsoft Azure, and Google Cloud. The faster you deliver a machine learning system that works, the faster you can focus on the business problems you're trying to crack. This book gives you a head start.
You'll discover how to:\nApply DevOps best practices to machine learning
Build production machine learning systems and maintain them
Monitor, instrument, load-test, and operationalize machine learning systems
Choose the correct MLOps tools for a given machine learning task
Run machine learning models on a variety of platforms and devices, including mobile phones and specialized hardware\nAbout the Author
Noah Gift is the founder of Pragmatic A.I. Labs. He lectures at MSDS, at Northwestern, Duke MIDS Graduate Data Science Program, the Graduate Data Science program at UC Berkeley, the UC Davis Graduate School of Management MSBA program, UNC Charlotte Data Science Initiative, and University of Tennessee (as part of the Tennessee Digital Jobs Factory). He teaches and designs graduate machine learning, MLOps, AI, and data science courses, and consulting on machine learning and cloud architecture for students and faculty. As a former CTO, individual contributor, and consultant he has over 20 years' experience shipping revenue-generating products in many industries including film, games, and SaaS.\nAlfredo Deza is a passionate software engineer, speaker, author, and former Olympic athlete with almost two decades of DevOps and software engineering experience. He currently teaches Machine Learning Engineering and gives worldwide lectures about software development, personal development, and professional sports. Alfredo has written several books about DevOps and Python, and continues to share his knowledge about resilient infrastructure, testing, and robust development practices in courses, books, and presentations.
Best prices to buy, sell, or rent ISBN 9781098103019
Frequently Asked Questions about Practical MLOps: Operationalizing Machine Learning Models
The price for the book starts from $44.88 on Amazon and is available from 34 sellers at the moment.
At BookScouter, the prices for the book start at $35.63. Feel free to explore the offers for the book in used or new condition from various booksellers, aggregated on our website.
If you’re interested in selling back the Practical MLOps: Operationalizing Machine Learning Models book, you can always look up BookScouter for the best deal. BookScouter checks 30+ buyback vendors with a single search and gives you actual information on buyback pricing instantly.
As for the Practical MLOps: Operationalizing Machine Learning Models book, the best buyback offer comes from and is $ for the book in good condition.
Practical MLOps: Operationalizing Machine Learning Models book is in low demand now as the rank for the book is 499,310 at the moment. It's a low rank, and the book has not much sales on Amazon.
The highest price to sell back the Practical MLOps: Operationalizing Machine Learning Models book within the last three months was on January 09 and it was $22.71.